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A systematic study of the stability of the two-dimensional flow over a backward- 
facing step with a nominal expansion ratio of 2 is presented up to Reynolds number 
Re = 2500 using direct numerical simulation as well as local and global stability 
analysis. Three different spectral element computer codes are used for the simulations. 
The stability analysis is performed both locally (at a number of streamwise locations) 
and globally (on the entire field) by computing the leading eigenvalues of a base flow 
state. The distinction is made between convectively and absolutely unstable mean 
flow. In two dimensions, i t  is shown that all the asymptotic flow states up to Re = 2500 
are time-independent in the absence of any external excitation, whereas the flow is 
convectively unstable, in a large portion of the flow domain, for Reynolds numbers 
in the range 700 < Re d 2500. Consequently, upstream generated small disturbances 
propagate downstream at exponentially amplified amplitude with a space-dependent 
speed. For small excitation disturbances, the amplitude of the resulting waveform 
is proportional to the disturbance amplitude. However, selective sustained external 
excitation (even at small amplitudes) can alter the behaviour of the system and lead 
to time-dependent flow. Two different types of excitation are imposed at the inflow: 
(1) monochromatic waves with frequency chosen to be either close to or very far from 
the shear layer frequency; and (ii) random noise. I t  is found that for small-amplitude 
monochromatic excitation the flow acquires a time-periodic behaviour if perturbed 
close to the shear layer frequency, whereas the flow remains unaffected for high values 
of the excitation frequency. On the other hand, for the random noise as input, an 
unsteady behaviour is obtained with a fundamental frequency close to the shear layer 
frequency. 

1. Introduction 
The flow over a backward-facing step has received much attention as a prototype 

internal, separated flow. A detailed experimental study of mean flow quantities for a 
nominal expansion ratio (outlet to inlet height) of approximately 2 and for Reynolds 
numbers up to Re = 8000 is given by Armaly et ~ l .  (1983) (see also references therein). 
Most computational studies up to now have focused on the low Reynolds number 
regime (Re ,< 1000). The well-defined nature of the problem as well as the availability 
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of experimental data make step flow a benchmark problem for numerical methods 
(Gresho & Sani 1990). 

In recent numerical work, however, discrepancies between various simulations have 
been reported regarding the time-asymptotic states of this flow for Reynolds number 
of order 1000 and beyond. For a given expansion ratio, the flow has been found to be 
steady or time-dependent depending on the specific numerical method and the selected 
resolution employed. Typically, simulation results based on low-order (relatively 
diffusive and/or dispersive) methods report steady (time-independent) states, whereas 
vortex and spectral methods report unsteady (time-dependent) flow. In particular, in 
two-dimensional simulations for a step expansion ratio close to 2, global unsteadiness 
has been computed for Reynolds numbers greater than 750 (Sethian & Ghoniem 
1988) and 700 (Kaiktsis, Karniadakis & Orszag 1991), while steady flow results 
have been reported by Osswald, Ghia & Ghia (1983) for up to Re = 1474. More 
recently, a series of high-resolution numerical studies reported by Gresho et al. (1993) 
demonstrated that the step flow is stable to two-dimensional temporal perturbations 
for Reynolds numbers up to 800. 

In laboratory experiments the flow appears to be three-dimensional above Re m 
400 (Armaly et al. 1983). The reported normalized values for the reattachment 
length exhibit a peak at Re = 1200. The subsequent decrease of the primary 
recirculation zone length with Reynolds number increasing beyond Re 3 1200 can 
only be attributed to the action of Reynolds stresses. These Reynolds stresses must 
be present in the flow for Reynolds numbers lower than the one corresponding to the 
maximum value of the reattachment length. Therefore, the flow must become unsteady 
at some Re < 1200. More recent experimental results and corresponding stability 
calculations for an expansion ratio larger than 2 also suggest that the flow becomes 
unsteady for Reynolds number Re ,< 1000 (M. Gaster, private communications). For 
axisymmetric expansions, unsteadiness has been observed in the experimental work 
by Latornell & Pollard (1986), where, in particular, strong sensitivity to the inlet 
boundary conditions was observed. 

Theoretically, the stability properties of step flow can be analysed qualitatively by 
considering the inviscid shear layer model examined by Huerre & Monkewitz (1985). 
If we denote by U1 and U2 the velocities of the two streams, then the absolute 
instability condition for that profile is R = (Ul - U2)/(U1 + U,) > 1.315, which is 
satisfied if U2 is sufficiently large and negative. If we consider a typical streamwise 
velocity profile in step flow within the primary separated zone (see figure 1) and 
substitute for U1 and Uz the maximum positive and negative velocities, respectively, 
we find that at Re = 700 the ratio R is slightly higher than 1.315 for all profiles in 
the region 7.6 < X < 9.4. However, the profile plotted in figure 1 is quite different 
from that of the shear layer model of Huerre & Monkewitz owing to the presence 
of channel walls. Furthermore, in a spatially developing flow, a sufficiently large 
‘pocket’ of local absolute instability is necessary to generate global unsteadiness. This 
is expressed using the criterion of Chomaz, Huerre & Redekopp (1990) as 

where the region of local absolute instability extends from x = X ,  to x = Xh and aogi(x) 
are the temporal ‘absolute growth-rates’ of the streamwise velocity profiles; wgi(x) 
correspond to vanishing group velocity (do/dklk,  = 0), where both the frequency 
w and the wavenumber k are complex. It is clear from this simple argument that, 
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FIGURE 1. Streamwise velocity profile at X = 8 (approximately 7.5 step heights downstream of the 
expansion cross-section); Re = 700. 

U-velocity 

especially in the region close to the channel expansion, local temporal stability 
analysis, although suggestive of an instability, cannot give a definitive solution to the 
global stability properties of step flow. 

There are many possible reasons for the discrepancies between different simulation 
results, as well as between simulation and experiments. Insufficient spatial and 
temporal resolution, differences in the dispersive and diffusive properties of low- 
and high-order methods, and statistical noise associated with, e.g., viscous vortex 
methods, are perhaps the most important factors affecting computational results. 
Experimental results are affected by the omnipresent background noise, the three- 
dimensional character of the flow, and induced three-dimensionality effects due to the 
finite aspect ratio. All these factors, coupled with the stability characteristics of the 
flow below and above a critical Reynolds number (determined in the present problem 
primarily by the expansion ratio and the inlet boundary conditions) can contribute 
to the disagreements among the various studies. 

In the present work, we investigate systematically the effects of various kinds of 
flow excitation and classify the stability regimes of the flow based on modern concepts 
of instability theory, e.g. the distinction between convectively and absolutely unstable 
flow (Bers 1975; Huerre & Monkewitz 1985, 1990; Triantafyllou, Triantafyllou & 
Chryssostomidis 1986; Deissler 1987). Our objective is three-fold: (i) to provide a 
clear understanding and classification of primary asymptotic two-dimensional flow 
states; (ii) to explain both experimental and numerical results in the context of 
instability theory; and (iii) to understand, in a more generic form, the nonlinear 
response of a convectively unstable flow system. 

We use spectral element discretization algorithms for the numerical solution of 
the incompressible Navier-Stokes equations. These algorithms allow for a systematic 
variation of resolution parameters and, in particular, they allow resolution checks 
using two different convergence paths corresponding to h-type and p-type refinement. 
Three different spectral element codes were used (see below). The inflow boundary 
conditions can be specified as arbitrary functions of time so that the effects of sustained 
flow excitation at inflow can be compared to impulsive shear layer excitation at the 
step corner via a localized forcing. Many different cases are examined corresponding 
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to different excitation forms of varying amplitude and frequency, while extensive 
resolution tests are performed to understand the stability properties of the discrete 
system and its relationship to the flow stability. It is demonstrated through direct 
numerical simulation and stability analysis that the flow is convectively unstable in 
a large portion of its domain around Re = 700 and that large growth of upstream 
disturbances is achieved at higher Reynolds numbers. For example, at Re = 1000, 
upstream disturbances are amplified by two orders of magnitude over a downstream 
distance of 30 step heights. This large spatial amplification can lead to time-dependent 
flow in the presence of even very small-amplitude sustained disturbances. 

The paper is organized as follows. In $2 we summarize the governing equations and 
numerical techniques used here. In $3 we present the results of our two-dimensional 
simulations and in $4 we present the results of local and global stability analysis. 
Finally, in $5 we summarize our results and conclude in $6. 

2, Problem definition and formulation 

tions 
We consider incompressible Newtonian fluids governed by the Navier-Stokes equa- 

+ vv2v + F in 9, - Dv - - -- 
Dt P 

V . v = O  in 9, (2b) 
where v(x,  t) is the velocity field, p is the static pressure, p is the density, and v is 
the kinematic viscosity; F accounts for external body forces and is set equal to zero, 
unless otherwise indicated; D denotes total derivative, is .  D = B / d t  + v . V .  The 
Reynolds number Re is defined as 

Re = Um,,(2h)/v, (3) 
where h is the height of the inlet channel, and U,,, is the maximum velocity 
of the parabolic profile prescribed at the inflow boundary. Neumann boundary 
conditions (dv ldx  = 0) are prescribed for the velocity at the outflow boundary. 
All lengths are non-dimensionalized with h, all velocities with U,,,, and pressure 
differences with p UL,,. All reported times are in non-dimensional (convective) units, 
T = (t UmaX)/h,  and all frequencies are also non-dimensionalized as Strouhal numbers, 
i.e. St  = (f h)/Uma,. Wavenumbers are non-dimensionalized with l/h, i.e. a = k h. 

The numerical solution of the above system of equations is obtained in the domain 
9 ; typical quadrilateral and triangular spectral element discretizations (corresponding 
to different outflow lengths) are shown in figures 2 and 3. The non-dimensional step 
height is S = 0.94231; thus the expansion ratio is r = 1.94231, exactly as in the 
experiments of Armaly et al. The expansion is placed one non-dimensional unit 
downstream of the inflow boundary; our previous investigation (Kaiktsis et al. 1991) 
has shown that the inflow channel length has a relatively small effect on the computed 
flow field for Re 3 200. The computational domain used in the low Reynolds number 
simulations (Re < 1000) extends to a total outflow length of 35 non-dimensional 
units. For the higher Reynolds number simulations as well as for stability calculations, 
domains with an outflow length of 60 and 100 units were used; comparisons with the 
different size domains are presented in Appendix C. The origin of the axes is taken 
at the middle of the inflow cross-section. This geometry is the same as that for the 
two-dimensional computations reported by Kaiktsis et al. (199 l), where calculations 
only on a quadrilateral relatively coarse mesh were performed. The spatial resolution 
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FIGURE 2. Quadrilateral spectral element mesh for flow over a backward-facing step, showing 
elements close to the expansion, and the entire mesh. Shown also are five points where velocity 
histories are recorded (see table 1). 

( 1, -1.44231) 

x =  1 x = 6 0  

FIGURE 3. Triangular spectral element mesh for flow over a backward-facing step, showing elements 
close to the expansion, and the entire mesh. Within each triangle variables are represented as 
high-order Jacobi polynomial expansions. 

used here is significantly higher than in that paper (see Appendix B for resolution 
tests). 

The system of equations (2) is solved using three distinct codes: (i) a conforming 
quadrilateral-based spectral element code (Patera 1984; Karniadakis et al. 1993); (ii) 
a non-conforming quadrilateral spectral element code (Funaro, Quarteroni & Zanolli 
1988; Mavriplis 1989; Henderson & Karniadakis 1993); and (iii) a conforming 
triangle-based spectral element code (Dubiner 1991 ; Sherwin & Karniadakis 1995). 
The time discretization is based on a second-order accurate mixed stiffly stable 
splitting scheme (Orszag, Israeli & Deville 1986; Karniadakis, Israeli & Orszag 1991). 

3. Numerical simulations 
The computational domain (see figure 2) is broken up into K macro-elements; 

within each element the field unknowns and data are expressed as tensor products of 
sixth-, eighth-, tenth- or twelfth-order Lagrangian interpolants (7 x 7, 9 x 9, 11 x 11, 
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Point A B C D E 

X 2.50 7.00 13.667 23.00 28.00 
Y -0.50 -0.814 -1.128 -0.814 -0.50 

TABLE 1. Coordinates of the principal observation points. 

and 13 x 13 points in each macro-element). The number of elements K varies from 
258 to 648 in the different runs with all domains. A time step of 0.005 is used in 
most of the simulations, corresponding to a frequency which is higher than typical 
natural frequences by three orders of magnitude (see below); temporal resolution tests 
are also performed and the results are included in Appendix B. The time-dependent 
system of equations (2) is marched in time until all variables converge to a stationary 
state. This state is then used as an initial condition for a still higher Reynolds number 
simulation. 

In order to follow the temporal response of the flow, the time history of the 
calculated quantities is followed at a number of points in the computational domain. 
All points are located either at element corners or in the middle of a side, so that 
they remain fixed with increase of elemental resolution (p-refinement). We will refer 
to five of those points (marked on figure 2) as the principal observation points; 
their coordinates are given in table 1. Several simulation results are presented next 
corresponding to impulsive excitation as well as sustained excitation; the conforming 
quadrilateral spectral element code is used in most of these simulations. 

3.1. Impulsive excitation 
3.1.1. Shear layer forcing 

To begin, we perform stability studies by disturbing the steady-state step flow with 
an external body force along the y-direction, Fy,  located close to the step corner 
(1 < x < 1.25, -0.6 < y < -0.4). The type of impulsive shear layer forcing does not 
affect the qualitative behaviour of the perturbed flow (see Appendix A). The initially 
imposed disturbance is of the form 

Fy = esin(2nf~)  (4) 
and is sustained for a short period of time up to t = 0.5. Here, the excitation frequency 
is set to a high value (fe = 10) in order to avoid any lock-in effects with the natural 
frequencies of the flow corresponding to the shear layer and Tollmien-Schlichting 
modes (see Kaiktsis et al. 1991). The amplitude e is typically chosen to be 1.0. The 
effect of the disturbance amplitude on the resulting waveform is also investigated 
(see below). For a given Reynolds number, a flow region around an X-station is 
convectively unstable, if disturbances are amplified as they are convected downstream 
with the flow, eventually decaying at a given observation point. A qualitative picture 
of the evolution of the perturbed flow can be obtained from the computed velocity 
histories. The simulation at Re = 500 (e  = 1.0) illustrates that there are regions of 
slight growth downstream. In figure 4 we plot the history of the V-velocity (crossflow) 
component at the principal observation points (7 x 7 elemental resolution); in all cases 
(A-E) the initial value is subtracted from the computed values. The disturbance close 
to the step corner initiates a waveform whose amplitude increases slightly downstream, 
i.e. point D, and subsequently decreases. Similar simulations at Re = 400 show a 
clear decay of identical form of excitation for X 3 12, i.e. downstream of point C. 
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FICURF 4. V-velocity (crossflow) time histories for Re = 500 (shear layer forcing). 

A large part of the flow domain is convectively unstable at Re 3 700: As can be 
seen in figure 5 (dashed line, corresponding to E = 1.0, 9 x 9 elemental resolution), 
a disturbance is formed upstream which propagates with a space-dependent speed 
and with amplitude that is increasing at downstream locations. This behaviour is 
also typical for all the higher Reynolds number simulations we have carried out: a 
waveform initiated upstream is amplified downstream and exits the computational 
domain leaving steady laminar flow behind. 

V-velocity time histories from simulations at Re = 1000, Re = 1500 and Re = 2000 
with E = 1.0 (9 x 9 elemental resolution) are plotted in figures 6, 7 and 8. The 
simulations at Re = 1500 and Re = 2000 are performed for the long computational 
domain (X,,, = 60, see Appendix C). Notice that as the Reynolds number increases 
so do the levels of the response: the maximum response increases by about a factor 
10 from Re = 400 to 700, another factor of 10 from Re = 700 to 1000, and another 
factor of 2 to 3 from Re = 1000 to 1500, nearly saturating as Re increases further. For 
Re 3 1500 the perturbed flow acquires nonlinear characteristics in the downstream 
channel region (for this level of excitation amplitude), with perturbations persisting 
for large times. 

The two-dimensional results for Re 3 1500 exhibit unphysical features. For ex- 
ample, in the steady-state field at Re = 2000 plotted in figure 9, both the primary 
and secondary (upper wall) recirculation zones are significantly larger than those 
observed experimentally (Armaly et al. 1983). In particular, the length of the primary 
separation zone is 18.5 step heights in the simulation, in contrast with the experi- 
mental value of about 13.5 step heights. In this regime, the actual flow is strongly 
three-dimensional and unsteady (Armaly et al. 1983; Kaiktsis et ul. 1991). In the 
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FIGURE 5. Y-velocity time histories normalized by excitation amplitude E for Re = 700 

(shear layer forcing): -, E = 0.1; - - - -, E = 1.0; - - -, E = 2.0. 

laboratory step flow there are apparently substantial Reynolds stresses that result in 
decreasing the size of the recirculation zones. 

Next we study the spatial distribution of the perturbations. Consider the flow 
quantities V(x, y ,  t) defined as 

vt, vka,y(x, Y )  = max[v/(x, Y ,  t )  - ~ ( x ,  Y,O)I (5a)  

In figure 10 we plot the distribution of Uimp and Vimp for the U -  (streamwise) and V -  
(crossflow) components of velocity at Re = 700 (e  = 1.0, 9 x 9 elemental resolution). 
In both cases the global maxima are located around X NN 25. Thus, at Re = 700 
the waveform fluctuations amplify for approximately 25 step heights downstream of 
the sudden expansion and decay gradually farther downstream. Note the different 
distribution of Uimp and Vimp in the downstream channel region: for a given channel 
cross-section the U:mp distribution exhibits two maxima close to the walls and is 
minimum at the channel centreline, while the distribution of VimP is maximum close 
to the centreline. Also note the slight amplification of the perturbations close to the 
outflow boundary; this numerical effect is due to the outflow boundary condition 
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FIGURE 6. I/-velocity time histories for Re = 1000 (shear layer forcing). 
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FIGURE 7 V-velocity time histories for Re = 1500 (shear layer forcing). 
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FIGURE 8. V-velocity time histories for Re = 2000 (shear layer forcing). 

FIGURE 9. Steady-state streamlines at Re = 2000. (The streamwise dimension is compressed for 
clarity, the outflow is located at x = 60.) Shown in the background is the mesh triangulation used 
in this simulation. 

but does not affect the results for X < 32 in the case of a computational domain 
extending to X = 35 (see Appendix C). 

The study of the distribution of Uh,, and Vim, at different Reynolds numbers 
shows that the streamwise extent of the amplification region increases with Reynolds 
number. This is, of course, related to the base flow: as the Reynolds number increases, 
the size of the primary and upper-wall recirculation zones also increases; thus the 
region of unstable inflectional profiles is extended farther downstream. In table 2 
we report the maximum value of Vimp and the corresponding point coordinates for 
different values of Reynolds number (shear layer forcing, e = 1.0). (The region 
X < 2.5 very close to the expansion is obviously not taken into account in the data 
processing, while the reported data are free of outflow length effects). 

An important conclusion from these results is that one must be very careful in 
performing global temporal stability analyses of this flow in order to avoid misleading 
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FIGURE 10. Colour-coded contours of U&p and Vimp at Re = 700 (shear layer forcing, short 
domain). (The x scale IS compressed by a factor of 4.) 

Re Vc:mp X Y 

400 0.00278 11.61 -0.53 
500 0.00641 16.50 -0.50 
700 0.03235 24.00 -0.52 

1000 0.25545 31.16 -0.50 

TABLE 2. Maximum values of Vimp and corresponding coordinates for different values of Reynolds 
number. Standard shear layer forcing, 9 x 9 elemental resolution. 

results. Temporal stability analysis requires both upstream and downstream boundary 
conditions for the perturbations. For example, if at Re = 1000 the computational 
domain is less than approximately 35 units and the outflow perturbation amplitude 
is zero, the results are expected to be seriously affected. 

The dependence of the waveform propagation speed on spatial location can be 
investigated by introducing a number of observation points along lines of constant 
X -  or Y-coordinate. In figure 11 we plot the history of the I/-velocity components 
for a number of observation points located at one of the studied X-stations, namely 
at X = 28 ( R e  = 700, c = 1.0, 9 x 9 elemental resolution). The Y-coordinates of 
these points are given in table 3. The waveform evidently arrives simultaneously 
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FIGURE 11. V-velocity time histories for Re = 700; X = 28 (shear layer forcing). 

Point F G H I  .I 

Y -0.333 -0.166 0 0.166 0.333 

TABLE 3. Y-coordinates of observation points of figure 11. 

at all points of constant X-coordinate and thus the waveform speed is independent 
of Y .  (Study of numerical signals for observation points corresponding to the grid 
points closest to the upper and lower walls, i.e. Y = 0.3939, 0.446198, 0.4833, and 
Y = -1.3423, -1.3916, -1.4266, shows independence of propagation speed on Y- 
coordinate, even very close to the walls.) The dependence on X-location is checked 
by introducing a total of 80 observation points along the line of Y = -0.5 (along the 
inlet-channel lower wall). Based on the numerical signals, it is possible to estimate 
for each point the arrival time of the waveform. If P1 and P2 are two points located 
close together, with arrival times t l  and t 2  respectively, and with X2 > X1, then the 
propagation speed can be approximated: 

A systematic study shows that for each X-location the propagation speed is very 
close to the local maximum streamwise velocity, which decreases with increasing 
X-coordinate. 

The effect of the disturbance amplitude on the perturbed flows is investigated 
by performing a number of simulations using 9 x 9 elemental resolution with f 
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FIGURI: 12. Maximum positive perturbation ( VAax) versus excitation amplitude (6 )  at Re = 700 
(shear layer forcing): (a) point A (upstream region) ( b )  point D (downstream region). 

(see equation (4)) ranging from 0.1 to 100. Note that since the external forcing 
is imposed in a small region close to the step corner, values of f = 1 and higher 
will still result in relatively small velocity and pressure perturbations. Indeed, the 
resulting signals illustrate a nearly linear response to excitation amplitude E, for 
E < 2. In figure 5 we plot the history of the V-velocity components normalized by 
E, i.e. (( V ( x ,  y ,  t )  - V ( x ,  y ,  O))/e), at the principal observation points. Three values 
of excitation amplitude are included here, namely e = 0.1,1.0,2.0. For all points 
considered, the three normalized signals are nearly equal, indicating that indeed the 
response is almost linearly proportional to E .  For E 3 2 the effect of the excitation 
amplitude is different in the upstream and downstream regions. In figure 12 we 
plot the maximum positive perturbation VA,, (see equation ( 5 ) )  versus the excitation 
amplitude at points A (in the upstream region) and D (in the downstream region). 
The amplitude of the waveform increases linearly with e in the upstream region, even 
at high values of e. In the downstream region a linear dependence is observed only 
for small values of e ;  for very high values o f f  the nonlinear response saturates. These 
results are very consistent with the convectively unstable character of the flow and 
the strong spatial amplification at Re 3 700. 
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FIGURE 13. V-velocity time histories for Re = 700 (inflow perturbations). 

3.1.2. Inflow perturbations 
In order to explore the dependence of our results on the type of excitation, we 

perform a number of simulations in which we introduce perturbations at the inflow 
boundary. In particular, we introduce a I/-velocity disturbance at the entire inflow 
boundary (with the exception of the two wall points) for a short period of time up to 
t = 0.5. The perturbation is chosen to be of the form 

V(0, y ,  t )  = E U,,, sin(2nfet) (7) 
with fe  = 10 and typically e = 0.01. In figure 13 we plot the history of the V-velocity 
components at the principal observation points for Re = 700 and E = 0.01 (9 x 9 
elemental resolution). Clearly, the disturbances are amplified at the downstream 
locations. The distributions of UimP and ViYp (Kaiktsis 1995) are very similar to the 
ones corresponding to the shear layer excitation (see figure 10). The downstream 
maximum of Vimp is located at X = 26.32, Y = -0.52. The slightly earlier decay 
in the case of the standard shear layer forcing (see table 2 )  can be attributed to 
the higher effective forcing, resulting in a small deviation from linearity downstream. 
These results show that the system responds similarly to both shear layer forcing and 
inflow perturbations. Indeed, the downstream wavepackets shown in figures 5 and 13 
are quite similar. 

3.2. Sustained excitation 
In our earlier paper (Kaiktsis et al. 1991), simulation results obtained at lower 
resolutions than those of the present paper showed that global unsteadiness is possible 
for Re 3 700. The results for impulsive excitation reported above suggest that 
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background noise, as introduced for example by the discretization error at low 
spatial resolution, acts as a disturbance which changes the character of the computed 
asymptotic flow states. At Re = 700, Kaiktsis et al. report a limit cycle of frequency 
f = f 2  = 0.104. In order to investigate the receptivity of the flow to different external 
frequencies, a number of forced simulations is performed at Re = 700 and Re = 1000 
(9 x 9 elemental resolution). A V-velocity component, sustained in time, is introduced 
at the entire inflow boundary (with the exception of the two wall points), according to 
the relation V = F Urn,, sin(2nfet), with various values of f C ;  two different values of 6 

are used, lo-’ and For ft. < 0.5, the response of the flow is periodic in time at 
f = f e  with fluctuations of finite amplitude. (Depending on the value of fe  and spatial 
location, superharmonics of f r  are also observed). In all cases, averaging is performed 
for a number of periods, l/fc, after the initial transients have died out. In figure 14 
we plot profiles of the RMS fluctuation intensities along a representative Y -location 
(Re = 700, F = lo-’). It is clear that different flow regimes are sensitive to different 
external frequencies. In particular, upstream locations (X < 10) exhibit maximum 
fluctuations for f e  z 0.15, while in the reattachement and early recovery regions 
(10 d X < 20) the fluctuations are maximal for f c  z f l  = 0.104; in the channel 
region farther downstream we get high fluctuations for 0.05 < f e  < f z .  In general, 
upstream locations are more sensitive to higher external frequencies, as compared 
to downstream locations. This result is in agreement with local temporal stability 
analysis calculations (Kaiktsis 1995), reporting a basic decrease of the frequency of 
the most unstable mode with increasing streamwise coordinate. 

The overall effect of external excitation on the entire flow domain can be expressed 
in terms of a space-average RMS fluctuation intensity. Considering, for example, the 
V-velocity component, we define 

where a prime denotes fluctuation, an overline denotes time-average, and A is the 
area of the computational domain. In figure 15 we plot the computed values of 
(UkMS), (Vk,,) and (PKMS) as a function of the excitation frequency, fe.  Clearly, 
in all cases the distributions have a maximum around f e  c f z .  Thus, at Re = 700, 
f z  seems to be the dominant frequency of the flow, which is imposed on the entire 
domain in the case of unsteady flow, driven by marginal spatial resolution (Kaiktsis 
et al. 1991); detailed tests, based on a systematic variation of spatial and temporal 
resolution, confirming this finding, are presented in Kaiktsis (1995). 

At Re = 700 two simulations are performed at the high excitation frequencies 
fe  = 1.0 and f e  = 10, with F = lop2. At f e  = 1.0, after the initial propagation of a 
waveform, the flow exhibits time-periodic behaviour o f f  = f E  in the upstream region, 
characterized by very low-amplitude fluctuations ; in the downstream region the flow 
equilibrates to a steady laminar state. At f e  = 10 the flow state is practically a steady 
laminar state for the entire domain at large times. 

A useful conclusion from the above forced simulations is that, even for very 
low-amplitude monochromatic excitation, the flow can exhibit very high-amplitude 
oscillations, if perturbed in the appropriate frequency regime. In particular, at 
downstream points the amplitude of the oscillations can be of order unity and thus 
comparable to Urn,,. In figure 16 we plot the history of the V-velocity component at 
point E for f e  = f z  at Re = 700 and Re = 1000; even for 6 = the flow exhibits 
finite-amplitude fluctuations at this downstream point. 
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FIGURE 14. RMS fluctuation intensity profiles along the x-direction at Re = 700, Y = -1.12821 
(sustained monochromatic inflow excitation, E = lo-*): -, fe = 0.025; ...... 3 f e -  - 0.05. 1 - - - -, 
fe = 0.104; - - -, f e  = 0.15; - - - -, f e  = 0.20; - - -, f e  = 0.25. (a) Streamwise component; 
(b)  crossflow component. 

In under-resolved simulations, finite spatial and temporal discretization errors may 
act as sustained disturbances. Discrete systems, in general, have a stronger tendency 
to instability and chaos than the continuous differential systems from which they 
arise. Based on the analysis of the monochromatic sustained excitation results, we 
expect that these discretization errors are equivalent to coherent forcing which yields 
maximum system response near a ‘resonant’ frequency. In order to further explore this 
phenomenon, we now study the opposite extreme of random excitation. In particular, 
we introduce a random V-disturbance, sustained in time, at each collocation point at 
the inflow, of the form V(O,y, t )  = E U,,, (1  - 2X); X is a random number between 
0 and 1, generated by the CRAY random number generation routine of uniform 
distribution, based on a lagged Fibonacci series (Petersen 1988). Note that the details 
of the computed velocity histories and spectra may depend on the particular choice 
of the noise, which is white spatially. Alternatively, one may introduce such an 
excitation at the continuum level by defining an appropriate covariance function and 
project it onto the discrete spectral element basis. Although we did not attempt 
this in the present study, we expect that the primary frequency peaks in the spectra 
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FIGURE 15. Space-average RMS fluctuation intensities, versus excitation frey..zncy, f e ,  Re = 700: 
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are independent of the specific form of the random noise excitation. We perform 
several tests at Re = 700 and at Re = 1000 at different excitation amplitudes. We 
find that the flow behaviour at large times is time-dependent even at c = these 
amplitudes are significantly lower than those of the forced numerical experiments at 
f E  = f z .  In figure 17 we plot the numerical signal and power spectrum at point E 
(9 x 9 elemental resolution). The spectrum is characterized by a broad-band response 
in the range 0.05 d f’ ,< 0.15. A careful study o f  spectra at all reference points 
shows a shift from higher to lower frequencies, with increasing streamwise coordinate. 
This result is consistent with the results of monochromatic excitation reported above 
and those of local stability analysis presented below. In the downstream channel 
region between points D and E the frequency content seems to be independent of the 
streamwise coordinate. A main frequency component f = 0.122 as well as a frequency 
approximately equal to fl are found at all reference points (see the power spectrum 
of point E). 

4. Stability analysis 
The stability character of the flow can be examined independently by performing a 

linear stability analysis at a number of streamwise locations. For Re = 700 we analyse 
the stability properties of streamwise velocity profiles at X = 2,3,5,10,15,20,25,27.5 
and 30, corresponding to locations in the separated and recovery zone; the profiles in 
the region 3 < X < 20 are shown in figure 18. The convectively unstable character of 
the flow was investigated using the technique of mapping the complex wavenumber 
plane to the complex frequency plane, as developed by Triantafyllou (see Triantafyllou 
et a/ .  19861. 
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FIGURE 16. V-velocity time histories at downstream point E for sustained inflow excitation at 
f e  = f2: (a) c = lo-*, (b)  E = lop4: -, Re = 700; ......, Re = 1000. 

All profiles examined at Re = 700 were found to be convectively unstable for 
X < 27.5, in good agreement with the impulsive excitation results (note that all 
profiles up to X = 26 are inflectional). Thus a spatial stability analysis is appro- 
priate for this flow, which is complicated here by the non-parallel nature of the 
base flow. For slowly varying mean profiles, like those exhibited by zero-pressure- 
gradient boundary layers, and for small growth rates, Gaster’s transformation (Gaster 
1962) (based on the analyticity of the eigenvalue dispersion relation) shows that 
there is a close relation between temporal and spatial modes. In the case of 
the step flow, this close relationship breaks down; it is therefore not sufficient to 
use temporal stability analysis alone to identify the stability properties of the step 
flow. 

The local spatial stability analysis performed here is based on a code developed by 
Triantafyllou (G. S. Triantafyllou, private communications) in which the solution to 
the Orr-Sommerfeld equation is obtained using high-order finite differencing in an 
iterative manner, until a value of zero is obtained for the temporal growth rate. The 
results of this analysis are shown in table 4 in terms of the wavenumber, the spatial 
growth rate and the frequency of the most-unstable mode for all profiles considered. 



Instabilities in two-dimensional JRow over a backwardTfacing step 175 

4 
0.010 

1 0.005 
.- s 
0 
9 e, O F  

s. > E  

-0.010 F 
-0.005 

t 

0 200 400 600 
Time 

I r - - - - - 7 7  TT--- 

1 
h 10 

0 0.05 0.10 0.15 0.20 
Frequency 

FIGURE 17. ( a )  I/-velocity numerical signal and (h)  associated power spectrum at downstream point 
E for random inflow ‘excitation ( R e  = 700, E = 0.01). 

It is seen that in the upstream region both the wavenumber and frequency decrease 
with increasing streamwise coordinate, while they remain approximately constant for 
X 3 15. 

The effect of absolute instabilities can be examined by performing a linear global 
temporal stability analysis, where disturbances are introduced of the form u’(x, y, t )  = 
Z(x, y)eof, where is the complex global frequency; for positive growth rates (oR > 0), 
self-sustained oscillations are present independent of any form of impulsive or sus- 
tained excitation. The eigenvalue problem is solved using a spectral element code 
(see Barkley & Henderson 1996). Since the results plotted in figure 14 indicate that 
at Re = 700 perturbations may not be small even 30 step heights downstream of 
the sudden expansion, we choose a long domain with a total outflow length of 100 
non-dimensional units. A modified Krylov method based on the upper Hessenberg 
system matrix (for efficiency) is used in this stability code. The real parts of the 
leading eigenvalues obtained at R e  = 200,375,700 and 1000 are all negative and of 
decreasing magnitude, indicating global stability of the flow, in agreement with the 
results of our direct numerical simulations, and also in agreement with the results 
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X-coordinate Wavenumber Growth rate Frequency 

2 2.37 
3 2.13 
5 1.85 

10 1.55 
15 1.60 
20 1.69 
25 1.63 
27.5 1.60 
30 1.56 

0.742 0.167 
0.523 0.143 
0.374 0.107 
0.369 0.054 
0.240 0.068 
0.138 0.072 
0.041 0.070 
0.009 0.068 

-0.030 0.066 

TABLE 4. Fastest growing modes in space at Re = 700. 
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FIGURE 19. Streamlines of base flow and leading eigenfunction at Re = 200. 
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FIGURE 20. Streamlines of base flow and leading eigenfunction at Re = 375. 

FIGURE 21. Instantaneous streamlines a t  Re = 3000. 

of Gresho et al. (1993). For higher Reynolds number it is difficult to obtain con- 
verged results, especially in the very long domain that we have used here. While 
the leading eigenvalue is real, the next eigenvalue appears as a complex-conjugate 
pair corresponding to a channel mode. For example, at Re = 200 the leading 
eigenvalue is (-0.07044; 0), the second and third are (-0.0892272; 0.02623104) and 
(-0.0892272 ; -0.02623 104). This complex-conjugate pair of eigenvalues corresponds 
to the least-stable channel mode; the second and third eigenfunctions are simply out 
of phase due to the translational symmetry in the channel part of the computational 
domain. The structure of the leading eigenmodes corresponding to Re  = 200 and 
Re = 375 is shown in figures 19 and 20, superimposed on the corresponding base 
flow. It is clear from these plots that the dominant instability is due to the flow in 
the upstream region. 

5.  Summary 
In this paper we investigate the stability of backward-facing step flow, using two- 

dimensional direct numerical simulation in conjunction with local and global stability 
analysis. Our results illustrate that a large part of the flow domain is convectively 
unstable for Reynolds numbers Re  3 700. This has been verified by following the 
evolution of upstream-generated disturbances (with both impulsive shear layer forcing 
and impulsive inflow excitation). Disturbances amplify downstream with different 
spatial distributions for the U -  (streamwise) and I/- (crossflow) velocity components. 



178 L. Kaiktsis, G. E. Karniadakis and S. A.  Orszag 

0 U:, 0.071 

0 0.098 

FIGURE 22. Colour-coded contours of UimS and V:m, at Re = 700 (low spatial resolution, oscillatory 
flow). (The x scale is compressed by a factor of 4.) 

For Reynolds numbers Re < 7827, for which plane Poiseuille flow is nonlinearly 
stable to two-dimensional disturbances (Herbert 1976; Orszag & Patera 1983), the 
two-dimensional step flow will relax to a steady laminar state far downstream (note 
that Re < 7827 as herein defined corresponds to Re < 2935 in Orszag & Patera 1983). 
Our two-dimensional simulations of step flow up to Re = 2500 demonstrate global 
stability to temporal perturbations. Thus bifurcation to self-sustained oscillations in 
two-dimensional flow is expected for 2500 < Re < 7827. It is very difficult using 
either direct numerical simulation or eigenvalue stability analysis to precisely identify 
this critical Reynolds number. Even at Re = 2500 we have to exercise particular 
care in the restarts of the simulation and use high resolution, in order to control 
round-off and discretization ‘noise’, which is acting as a source of excitation. At such 
high Reynolds numbers, disturbances due to a restart from a simulation at a lower 
Reynolds number may convect from the domain after a very long iteration time. 
With the time step kept sufficiently small to control temporal errors, this requirement 
translates to several hundred thousands of time steps. Preliminary simulation runs 
at Re = 3000, even at higher resolution, revealed an unsteady pattern (see figure 21). 
However, a more systematic study is necessary to assess such a claim; computationally 
this is currently quite expensive. In the physical laboratory the presence of background 
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noise will trigger unsteadiness at lower Reynolds numbers via spatial amplification. 
This seems to explain the earlier transition (at Re < 1200) reported in Armaly et al. 
(1983). 

Sustained external excitation even at small amplitudes leads to time-dependent 
behaviour at large times. Both monochromatic and random inflow excitations result 
in an oscillatory flow. For the monochromatic case, high amplitudes (for X ,< 35) are 
observed if the excitation frequency is close to the shear layer frequency, while very 
high values of excitation frequency leave the flow unaffected. 

Extensive tests (see Appendices) have been performed to ensure the independence 
of our results of excitation type, of numerical resolution parameters, as well as of the 
length of the computational domain. In all cases, the asymptotic states of the two- 
dimensional flow are time independent up to Re = 2500 (in the absence of any external 
excitation or random noise). Thus, it seems plausible that the unsteadiness reported 
in previous work (as in Kaiktsis et al. 1991) is due to the fact that the discretization 
error introduced at coarser spatial resolution acts as as sustained disturbance, which 
changes the character of the computational results. With this enhanced forcing due to 
the discretization errors, the computations exhibit global unsteadiness which masks 
the convective instability of the flow. In such a case the flow is characterized by a 
continuous feed of disturbances, which propagate downstream. Interestingly enough, 
the lower-resolution simulations also preserve the basic physics of this flow; the 
spatial distribution of fluctuations of the globally unsteady flow is found to be similar 
to the distribution of disturbances of the convectively unstable flow. At Re = 700, 
Kaiktsis et (11. ( 1991) report oscillations at f = f 2  = 0.104. In  figure 22 we present the 
distribution of the RMS fluctuation intensities of this Re = 700 simulation. Clearly, 
the spatial distribution of Uk,b,S and VkMS is very similar to the distribution of Ui,,,, 
and Vdml, (see figure 10). 

As already mentioned, step flows appear to be unsteady at lower Reynolds num- 
bers in the physical laboratory (Armaly et al. 1983; Latornell & Pollard 1986). 
Clearly, the earlier transition observed experimentally can be partially attributed to 
the background noise, always present in laboratory experiments and the sensitivity 
to inlet conditions (Latornell & Pollard 1986). However, it is possible that the dis- 
crepancy is also related to the fact that the actual flow is three-dimensional, and thus 
transition (in both experiments and numerical simulations) can result from three- 
dimensionality effects. In fact, results of ongoing three-dimensional simulations show 
that at Re = 2000 the three-dimensional flow is unsteady (Kaiktsis 1995). 

6. Conclusions 
Flow over a backward-facing step is a prototype of a complex shear-flow with 

both free shear layer and wall-bounded effects. It has features reminiscent of 
typical wall-bounded flows (like plane Poiseuille flow), especially in the recovery 
region, and features common to free shear flows (like mixing layers), especially 
near the step corner. In our previous paper (Kaiktsis et al. 1991), we concen- 
trated on the description of the onset of three-dimensionality in the step flow due 
to secondary instability of the primary two-dimensional flow. In the present pa- 
per, we re-visit this flow to explore in more depth the character of the primary 
flow. In particular, it is interesting how unsteadiness appears in step flow; unlike 
wakes in which absolute instability leads to unsteadiness and a limit cycle (Kar- 
niadakis & Triantafyllou 1992), unsteadiness in step flow is created via convective 
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instabilities through the sustained effects of noise. In that respect, this instabil- 
ity mechanism is similar to the one discovered in the work of Schatz, Barkley & 
Swinney (1995). This suggests that one must be careful in interpreting the re- 
sults of numerical simulations and stability analyses : some numerical simulations 
(like those based on vortex methods and lattice techniques, Sethian & Ghoniem 
1988; Qian et al. 1993) have inherent random background noise that can generate 
unsteady-flow results; on the other hand, temporal stability analyses may miss com- 
pletely the convective instabilities responsible for time dependence in the presence of 
noise. 
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Appendix A. Effect of shear layer forcing type 
In this Appendix we investigate the effect of different types of impulsive shear layer 

excitation on the perturbed flow. All tests are performed at Re = 700. First we check 
the effect of the direction of the forcing, by introducing the external body force along 
the x-direction, while maintaining its sinusoidal form, duration (0.5 time units) and 
regime applied (1 < x d 1.25, -0.6 < y d -0.4): 

F, = E sin(2nf,t) (A 1) 

where f e  = 10 and E = 1.0. The computed V-velocity time histories are presented in 
figure 23. Although forcing along the x-direction results in somewhat higher levels of 
perturbations, the system response is the same in terms of the propagation velocity 
of the induced waveform and in terms of the spatial distribution of disturbances, 
irrespective of the direction of the forcing introduced (compare figure 23 with dashed 
lines in figure 5) .  In an additional check we introduce a pulse along the y-direction 
in the same region close to the step corner: 

E if t < t ,  
0 otherwise. 

For the same values of E and to, the pulse results in much higher levels of pertur- 
bations, as compared to the standard short sinusoidal forcing. Comparable response 
amplitudes are obtained if the pulse is characterized by smaller values of e and to. 
Figure 24 corresponds to a pulse with E = 0.1 and to = 0.05, i.e. both c and t, are 
equal to 10% of the values corresponding to the standard sinusoidal forcing. Clearly, 
the computed velocity histories are very similar to those of figure 5. In both cases 
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FIGURE 25. Maximum positive perturbation (VmaX) profiles along the x-direction at Re = 700 for 
h-type refinement (inflow perturbations, 9 x 9 elemental resolution): -, 258 elements; - - - -, 512 
elements, high node density in x-direction; - - -, 512 elements, high node density in y-direction. 

studied in this Appendix the spatial distribution of Uimp and Vimp is very similar to 
the distribution produced by the standard shear layer forcing (figure 10). We conclude 
that the qualitative behaviour of the perturbed flow does not depend on the type of 
impulsive shear layer forcing. 
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FIGUR~ 26. Maximum positive perturbation ( V"mai)  profiles along the x-direction at Re = 700 for 
p-type refinement (inflow perturbations, 258 elements): - ~, 7 x 7;  - - - -, 9 x 9; -- - -, 11 x 11 
elemental resolution. 

Appendix B. Resolution tests 
Resolution tests are performed for all Reynolds numbers investigated up to Re = 

2500 and in all cases verify grid and time-step independence. This Appendix contains 
systematic resolution tests, performed at Reynolds number Re = 700, which is the 
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one primarily investigated in this work. All computations are performed for the 
domain with total outflow length of 35 non-dimensional units, which is sufficient for 
Re < 1000 (see Appendix C). Based on those tests, we select the optimal temporal and 
spatial resolution parameters, which are also used for the lower Reynolds number 
simulations. A more detailed discussion of resolution tests is presented in Kaiktsis 
(1995). 

To examine time resolution, we perform computations with an initial external 
forcing close to the step corner (e  = l), as described in $3 .  We select high (258 x 9 x 9, 
see below) resolution to minimize spatial errors. Three values of At are used, namely 
At = 0.003,0.005,0.01. For all reference points, all three values of At result in 
practically indistinguishable time responses (Kaiktsis 1995). Taking the simulation at 
At = 0.003 as the reference simulation, we find that the maximum absolute error in 
U’,,, and Vmax is of the order of 3 x lop4 in the case of At = 0.01, and of the order 
of in the case of At = 0.005. The maximum relative errors are 4% and 1% 
respectively. Note that the relative error should decrease with the response amplitude, 
and thus with the excitation amplitude. We conclude that the value of At = 0,005 is 
appropriate for the range of excitation amplitudes used in our computations. 

To examine spatial resolution, we perform h- and p-type refinement tests. In par- 
ticular, for h-refinement, we perform computations on two additional computational 
meshes, obtained by splitting in half all elements either in the x- or in the y-direction. 
In each case this results in a total of 512 spectral elements, with 9 x 9 points in each 
element. For p-refinement, we keep the number of spectral elements constant (258 
elements), using different polynomial degrees (7 x 7, 9 x 9, and 11 x 11 points in each 
macro-elemen t). 

The sufficiency of spatial resolution is checked in two steps. In the first step, we 
compare the steady-state fields obtained using different spatial resolution. Careful 
examination of the results shows very small differences between the 258 x 7 x 7 and 
258 x 9 x 9 simulations and practically no differences between the latter and all others 
(Kaiktsis 1995). 

In the second step, we consider the waveform propagation. Here we initiate the 
waveform by introducing a V-velocity component at the entire inflow boundary (with 
the exception of the two wall points) for a short period of time up to t = 0.5, given 
by V = c Um,,sin(2nfet), with c = 0.01 and fe = 10. The value of the time step 
is At = 0.005. A careful study of numerical signals shows that the discrepancies 
between the 258 x 9 x 9 simulation and all others of higher resolution are small. This 
is also illustrated in figures 25 and 26, where we present profiles of the maximum 
positive V-velocity perturbation (VA,,) at representative y-locations, corresponding 
to h- and p-type refinement. Note that the maximum absolute error is of the order of 

(higher than the corresponding temporal discretization error), while in all cases 
the form of the curves is the same and the maxima are located at exactly the same 
locations. Clearly, there is a small effect of the outflow boundary condition, which is 
more pronounced for the lowest-resolution (258 x 7 x 7) case. 

Finally, all high Reynolds number cases (Re 3 1500) were simulated using all 
three spectral element codes (see 92); in all cases substantially identical results were 
obtained. 

Appendix C. Outflow length effect 
The effect of the outflow length is investigated by performing computations on 

a domain with an outflow length of 60 non-dimensional units. Results are then 
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FIGURE 27. Streamwise velocity profiles along the x-direction ( Y  = -1.12821) at (a) Re = 700, ( b )  
Re = 1000, using 9 x 9 elemental resolution: ---, X,,, = 35; - - - -, X,,, = 60. 
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compared to those obtained with the standard domain of 35 units. In the X,,, = 60 
case, the computational grid is exactly the same as that of the shorter domain up 
to X = 35. The rest of the domain is discretized maintaining the node density at 
X = 35 up to X = 60. This results in a total of 408 spectral elements. (An even 
longer domain with X,,, = 100 with a total number of 648 quadrilateral elements has 
been also used in the context of this work.) 

The results demonstrate that a total outflow length of 35 units is sufficient for Re < 
1000. In figure 27(a) we plot the streamwise velocity profiles at a representative y -  
location of the steady-state fields corresponding to the two outflow lengths (Re = 700, 
9 x 9 elemental resolution). Clearly, for X < 35 the two fields practically coincide. In 
figure 28(a) we present the corresponding profiles of the maximum positive V-velocity 
perturbation (Vk,,) ; here we compare two simulations corresponding to the standard 
shear layer excitation, with E = 1 (9 x 9 elemental resolution). While the effect of the 
outflow boundary condition is clear for the short domain, the profiles are identical 
for X < 32. 

The 
corresponding profiles of steady-state velocities and maximum positive perturbations 
for the same y-location are presented in figures 27(b) and 28(b). While the steady- 

A similar test is performed at Re = 1000 (9 x 9 elemental resolution). 
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X- coordinate 

FIGURE 28. Maximum positive perturbation ( VmaX) profiles along the x-direction ( Y  = -1.12821) 
at ( a )  Re  = 700 ( b )  Re = 1000 (shear layer forcing): -, X,,, = 35; - - - -, X,,, = 60. 

state fields are the same even very close to the outflow boundary, errors due to the 
outflow boundary condition are present in the perturbation profile corresponding to 
the short-domain simulation. Those errors are larger, than the ones at Re = 700; 
however the perturbation profiles still coincide for X < 32. The accuracy of the 
short-domain results close to the outflow boundary is quite remarkable, given that 
the perturbation distribution is maximum at X = 30. 
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